Mouse Tigar activation kit by CRISPRa

CAT#: GA216357

Tigar CRISPRa kit - CRISPR gene activation of mouse Trp53 induced glycolysis regulatory phosphatase



  See Other Versions

CNY 12255.00


货期*
4周

规格
    • 1 kit

Product images

Specifications

Product Data
Format 3 gRNAs (5ug each), 1 scramble ctrl (10ug) and 1 enhancer vector (10ug)
Symbol Tigar
Locus ID 319801
Kit Components

GA216357G1, Tigar gRNA vector 1 in pCas-Guide-GFP-CRISPRa

GA216357G2, Tigar gRNA vector 2 in pCas-Guide-GFP-CRISPRa

GA216357G3, Tigar gRNA vector 3 in pCas-Guide-GFP-CRISPRa

1 CRISPRa-Enhancer vector, SKU GE100056

1 CRISPRa scramble vector, SKU GE100077

Reference Data
RefSeq NM_177003
Synonyms 9630033F20Rik; AA793651; AI595337; C79710; C85509
Summary Fructose-bisphosphatase hydrolyzing fructose-2,6-bisphosphate as well as fructose-1,6-bisphosphate (By similarity). Acts as a negative regulator of glycolysis by lowering intracellular levels of fructose-2,6-bisphosphate in a p53/TP53-dependent manner, resulting in the pentose phosphate pathway (PPP) activation and NADPH production (PubMed:23726973). Contributes to the generation of reduced glutathione to cause a decrease in intracellular reactive oxygen species (ROS) content, correlating with its ability to protect cells from oxidative or metabolic stress-induced cell death (PubMed:23726973). Plays a role in promoting protection against cell death during hypoxia by decreasing mitochondria ROS levels in a HK2-dependent manner through a mechanism that is independent of its fructose-bisphosphatase activity (By similarity). In response to cardiac damage stress, mediates p53-induced inhibition of myocyte mitophagy through ROS levels reduction and the subsequent inactivation of BNIP3 (PubMed:22044588). Reduced mitophagy results in an enhanced apoptotic myocyte cell death, and exacerbates cardiac damage (PubMed:22044588). Plays a role in adult intestinal regeneration; contributes to the growth, proliferation and survival of intestinal crypts following tissue ablation (PubMed:23726973). Plays a neuroprotective role against ischemic brain damage by enhancing PPP flux and preserving mitochondria functions (PubMed:24872551). Protects glioma cells from hypoxia- and ROS-induced cell death by inhibiting glycolysis and activating mitochondrial energy metabolism and oxygen consumption in a TKTL1-dependent and p53/TP53-independent manner. Plays a role in cancer cell survival by promoting DNA repair through activating PPP flux in a CDK5-ATM-dependent signaling pathway during hypoxia and/or genome stress-induced DNA damage responses (By similarity). Involved in intestinal tumor progression (PubMed:23726973).[UniProtKB/Swiss-Prot Function]
*Delivery time may vary from web posted schedule. Occasional delays may occur due to unforeseen complexities in the preparation of your product. International customers may expect an additional 1-2 weeks in shipping.

Documents

Other Versions

Customer Reviews 
Loading...